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Abstract. We introduce a grey-box conformance testing method for
networks of interconnected Mealy Machines. This approach addresses
the scenario where all interfaces of the component under test are observ-
able, but its inputs are under the control of other white-box components.
We prove new conditions for full fault detection that exploit repetitions
across branching executions of the composite machine in a novel way.
Finally, we provide experimental evaluation of our approach on cascade
compositions of up to a thousand states, and show that it notably out-
performs existing black-box testing techniques.

1 Introduction/motivation

In this paper we propose a grey-box testing approach for networks of intercon-
nected Mealy Machines. We address the scenario where all communications of
the component under test can be observed, but some of its inputs are controlled
by other white-box parts of the system. The presented method falls within the
scope of conformance testing of finite state machines (FSMs) [3, 6]

In its most studied variant, the conformance testing problem for FSMs deals
with deterministic and input-complete FSMs, i.e., Mealy machines [15, 25, 20,
8, 7, 22]. In this setting, we consider a fully known Mealy machine M (the
specification) and a black box B, for which we only know a bound k on the
number of states. The goal is to design a test suite to determine whether the
black box B conforms (is equivalent) to the M .

FSM-based conformance testing is an active research area and numerous
techniques exist in the literature (see the survey [6], or[24]). The primary moti-
vation of these techniques is the verification of reactive systems for which FSMs
are a suitable model. Despite its simplicity, the FSM formalism is used in very
diverse domains, yielding a broad range of applications for FSM-based testing
[3]. Another notable application of conformance testing lies in automata learn-
ing [5] and derived procedures, such as black-box checking [16]. In the setting
of the “minimally adequate teacher” introduced by Angluin [1], such techniques
require an equivalence oracle in their application. However, these oracles are
largely impossible to obtain when dealing with black box systems. Thus, in prac-
tice equivalence queries are simulated through various kinds of testing strategies
[10]. Furthermore, there is a well-known close relation between model inference
and conformance testing (see [2]) that extends to even more recent automata
learning techniques that do not require equivalence oracles [23, 26].
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In reality however, reactive systems rarely consist of a single monolithic struc-
ture, but instead consist of smaller interacting components. Existing FSM-based
techniques developed for black-box systems are not fit to deal with this context,
as they suffer from the problem of state explosion and rapidly hit a wall. Hence,
there is a need for gray-box methods able to exploit information about known
internal components and their communications. There are a few notable con-
formance testing works in this direction [19, 18, 17], but it remains a relatively
unexplored area.

We consider a scenario where all interfaces of the component under test B
are observable, but its inputs are controlled by other known components of the
system. The prototypical example of this occurs when B is the tail component
of a cascade composition of Mealy machines B ◦H, as depicted in Figure 3. The
State-Counting method [17], one of the main approaches for this situation, re-
sorts to treating B as a partially specified Mealy machine- i.e., a machine where
some transitions are missing. This reduction relies on a classical construction for
component minimization by Kim and Newborn [12] which involves an exponen-
tial blow-up of the problem’s size. However, it has been shown recently that this
expensive construction is not required to optimize components [14], and that
cheaper techniques may be used instead.

Our main contribution in this paper is a generalization of the State-Counting
method which avoids the Kim-Newborn construction. In order to achieve this,
we develop a formalism for reasoning about interleaving executions in systems
with universal branching. This allows us to prove new sufficient conditions for
complete fault-detection in the gray-box setting. We give two testing algorithms
making use of this newly introduced theory, and show experimentally that they
are able to handle compositions of up to a thousand states, whereas experimental
data on reasonably sized examples does not exist for the state-of-the-art [19,
17]. Additionally, we show a practical relation between the gray-box testing
task and the classical problem of determining language inclusion between non
deterministic automata (NFA) [13], as well as the problem of state reduction for
NFAs [11].

2 Preliminaries

General Notation Given an alphabet X, we write X∗ for the set of finite words
of arbitrary length over X. We use ε to denote the empty word, and given a
word α, |α| stands for its length. We write (α < β) α ≤ β when α is a (strict)
prefix of β.

Automata Over Finite Words We consider automata over finite words where all
states are accepting. Let ϕ be a finite alphabet. A non-deterministic finite
automaton (NFA) A over ϕ, is a tuple (ϕ, SA, ∆A, rA), where SA is a finite
set of states, ∆A : SA × ϕ→ 2SA is the transition function, and rA ∈ SA is the
initial state. A run of A on a word α ∈ ϕ∗ is defined as usual. We say that an
state s ∈ SA accepts a word α if there is a run of A on α starting from s. If
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s = rA we simply say that A accepts α. The language of s is the set LA(s) ⊆ ϕ∗
containing the words accepted by s. Note that LA(s) is prefix-closed. We simply
write LA for LA(rA). We lift ∆A to words α ∈ ϕ∗ in the natural way. The set
∆A(s, α) consists of all s′ such that some run of A on α from s finishes at s′.
We write ∆A(α) for ∆A(rA, α).

Mealy Machines A Mealy machine M is a tuple (IM , OM , SM , δM , λM , rM ),
where IM , OM are finite alphabets, SM is a finite set of states, δM : SM × IM →
SM is the next state function, λM : SM × IM → OM is the output function and
rM ∈ SM is the initial state. We lift δM and λM to input sequences in the natural
way. We define δM (s, ε) = s, λM (s, ε) = ε for all s. Given α ∈ I∗M , x ∈ IM , if
s′ = δM (s, α), then δM (s, αx) = δM (s′, x) and λM (s, αx) = λM (s, α)λM (s′, x).
We write δM (α) and λM (α) for δM (rM , α) and λM (rM , α) respectively. We say
that M is reduced if for any pair of different states s1, s2 ∈ SM there is a word
α ∈ IM distinguishing them, i.e., λM (s1, α) 6= λM (s2, α). We define Out(M) as
the set of words λM (α), for all α ∈ I∗M .

2.1 Conformance Testing

Let M be a Mealy machine representing an intended model or specification
for a black-box system B. A test suite for M is a finite prefix-closed set
E ⊆ (IM )∗. Sequences α ∈ (IM )∗ are called tests. We define suites as prefix-
closed sets, because it simplifies the exposition of technical results later on.
However, in practice only the maximal tests in a suite E are relevant. This is
because once the output response λB(α) of B to a test α is observed, the outputs
λB(β) for all β ≤ α are known as well. Thus, we define the total length, or
the number of symbols of a suite E as the sum of the lengths of its maximal
tests.

We denote by = the set of Mealy machines N with the same input/output
alphabets as M , and write =k for the set of those with at most k states. Given
a machine N ∈ =, and a set V ⊆ (IM )∗, we write M ∼V N if λM (α) = λN (α)
for all α ∈ V , or simply write M ∼ N when V = (IM )∗. We say that a suite
E is k-complete if M ∼E N implies M ∼ N for all N ∈ =k. The conformance
testing problem for Mealy machines is as follows.

Problem 1 (Unrestricted conformance testing). Given a Mealy machine M and
a number k ∈ N, compute a k-complete suite E for M .

There are three main parameters to optimize in this problem: running time,
number of maximal tests in the suite E, and number of symbols. The last two
objectives are important because a suite may be used on multiple black boxes
after its construction, or these black-box systems may be slow to execute. Thus,
for some applications it may be worthwhile to develop a slower algorithm that
results in smaller suites. We adopt the convention that suites produced by con-
formance testing algorithms are returned by listing their maximal tests. In these
circumstances, the time cost of such algorithms is trivially bounded by the total
length of the suites they construct.
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Methods developed to solve Problem 1 can be understood as modifications
of the first technique, the W-method [25, 27]. Despite the notable experimental
improvements (e.g., [6, 22]), the worst-case analysis of newer techniques does
not improve that of the original algorithm, as the W-method is optimal in the
worst case [27].

We discuss now the complexity of the W-method. Fix a reduced specifica-
tion machine M . We call the parameter e := k − |SM | the number of extra
states. This is a central variable in conformance testing, as it measures the
uncertainty about the black-box under test. The problem only is meaningful
when e ≥ 0. The number of (maximal) tests produced by the W-method is
O(|SM |2|IM |e+1), and the total number of symbols, as well as its time cost, are
given by O(|SM |2k|IM |e+1). Some insight on these bounds can be gained from
the general structure of conformance testing methods. In most of them, the suite
E is built in three stages. First, one constructs a state-cover V of M - i.e., a set
containing a word α with δM (α) = s for each s ∈ SM . Afterwards, one appends
to V the so-called traversal set (IM )e+1, of arbitrary words of length e + 1.
This addition is unavoidable and it is responsible for the exponential factor in
the previous bounds. Finally, some distinguishing suffixes are appended to each
word in V · (IM )e+1. Improvements over the W-method usually revolve around
modifications of this last step.

3 Problem Statement

In this section we introduce the restricted conformance testing problem,
which is the main subject of this text. As before, let M be a Mealy machine
representing a specification for a black box B. Let A be an NFA over IM rep-
resenting the context in which B operates. We consider the extension of the
conformance testing problem where it is not possible to apply arbitrary tests to
B, but only those sequences in LA can be used instead. Furthermore, now we do
not ask whether M and B are equivalent, but just whether they respond equally
to sequences in LA. That is, whether M ∼LA

B.
A test suite for M in the context of LA is a finite prefix-closed set

E ⊆ LA. Analogously to before, we say that E is k-complete (in the context
of LA) if whenever M ∼E N for some N ∈ =k, it also holds that M ∼LA

N .
Sometimes we will drop the phrase “in the context of LA”, and simply say that
E is k-complete when LA is implied and there is no ambiguity. We study the
following problem:

Problem 2 (Restricted conformance testing). Provided with a Mealy machine
M , an NFA A over IM , and some k ∈ N, compute a k-complete suite E ⊆ LA
for M in the context of LA.

As mentioned during the introduction, our motivation for this task lies in
the gray-box testing problem were the component under test has observable
interfaces, but uncontrollable inputs. During this paper, we focus in the following
particular case.
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TH

w.b. b.b.

Fig. 1. A cascade composition of Mealy machines

3.1 Testing of The Tail Component

A cascade composition T ◦ H of two Mealy machines, T and H consists in
a one-way sequential connection of both, where the head H processes external
inputs and the tail T reacts to H’s outputs (Figure 3). In this setting, T can only
respond to sequences belonging to Out(H). An NFA representing this language
is easily obtained by “removing” the input symbols from H’s transitions, as
shown in Figure 2 [12]. This is called the image automaton of H, Im(H).
This construction shows a straight-forward reduction of the following task to
Problem 2:

Problem 3 (Tail component testing). Given a cascade of Mealy machines T ◦H,
and some k ∈ N, compute a k-complete suite E ⊆ Out(H) for T in the context
of Out(H).

x,y, z/1

y/0, z/1

x/1

x,y, z/1
ca

b

(a) A Mealy machine H.

0,1

11

1
ca

b

(b) An NFA A accepting Out(H).

Fig. 2. Construction of the image automaton for a Mealy machine.

To simplify the discussion we will use this particular case of component test-
ing to motivate our main problem. However, more general forms of component
testing were interfaces are observable can also be addressed via Problem 2, as
there are polynomial reductions transforming this scenarios into cascade com-
positions [28, 14]. Now we give a brief overview existing solutions for the Tail
Testing problem.
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Baseline Solution: Testing of The Composite Machine Given a cascade
T ◦H, and a bound k, one can use existing black-box testing methods to solve
Problem 3 in the following way. First, a Mealy machine P representing the
whole composition can be obtained via a simple product construction [9]. Here,
IP = IH , OP = OH × OT , and SP ⊆ SH × ST . Afterwards, one can apply
any existing conformance testing method to obtain a |SH |k-complete suite E
for P . Finally, computing the image λH(E) of E through H we obtain a k-
complete suite for T in the context of Out(H). Taking into account the bounds
in section 2.1, the complexity of this approach is O(|SH |3|ST |2k|IM |eP+1), where
eP := k|SH | − |SP |. We note that even when k = |ST | and the original problem
presents no extra states, |SP | can be much smaller than |SH ||ST |, yielding a
large eP and making this approach impractical. We refer to this problem as the
blow-up of extra states.

Related Work To the date there are two main approaches proposed for the
Tail Testing problem which aim to overcome the blow-up of extra states of the
previous method. They are the State-Counting method [17] and a more recent
SAT-based technique [19]. Each one of these techniques encounter important
issues in their complexity analyses, however, and there is a lack of experimental
data about their performance outside very small examples (compositions not
reaching ten states in total).

The State-Counting method [17] gives sufficient conditions for complete fault
detection in presence of input restrictions. In order to apply these conditions to
Problem 3, one has to employ the Kim-Newborn construction [12], as described
in [18]. This involves constructing a so-called “incompletely specified machine”
P ′, via a product of T and the determinization of the image automaton Im(H).
The resulting size of P ′ is |ST |2|SH | in the worst case. This machine P ′ is used
later as the specification model to produce a k-complete suite. The drawback
of this analysis is, however, that this model P ′ can be exponentially bigger
than the composite machine P in the baseline method. This potentially yields
exponentially larger suites with exponentially longer tests.

The SAT-based approach in [19] constructs a k-complete suite E for T in an
iterative way, asking a SAT solver whether there is some T ′ ∈ =k with T ∼E T ′

but T �Out(H) T
′. If the answer is negative, E is already k-complete. Otherwise,

a suitable distinguishing sequence for T and T ′ is added to E. This technique has
the potential for producing small suites, but the drawback of having to perform
a possibly expensive SAT call for the computation of each individual test, whose
cost scales exponentially with |SH |, |ST |, k and |E|.

4 Theoretical Analysis

During this section M denotes a specification Mealy machine, A a context NFA
over IM , and E an unspecified test suite E ⊆ LA. Lastly, we consider a reflex-
ive binary relation v over SA which under-approximates language containment.
That is, a v b implies LA(a) ⊆ LA(b) for all a, b ∈ SA. The goal of this section
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is to give sufficient conditions for k-completeness of the suite E. These, in turn,
will provide the correctness guarantees for our proposed algorithms (Section 5).

Our sufficient conditions build upon those in the State-Counting method [17],
and can be seen as a generalization of them. Informally, the main difference is
that the State-Counting method only relates to the case where A is deterministic.

4.1 Product of a Mealy Machine with an NFA

Suppose we want to study the observable behaviours of M after the application
of a test α ∈ LA. Here, not only is it relevant to know the state δM (α), but
also the set of possible context states a ∈ ∆A(α). This is because these states a
determine which suffixes that can extend the test α. Thus, in our setting, state
pairs (s, a) ∈ SM × SA play a major role.

The product transition function is the map given by ∆M×A((s, a), α) =
{δM (s, α)} × ∆A(a, α), for any (s, a) ∈ SM × SA, α ∈ I∗M . Additionally, given
α ∈ I∗M , we write ∆S×A(α) to denote ∆S×A((rM , rA), α).

s t

0/1,1/1

0/0,1/1

(a) A Mealy machine M .

0,1

11

1
ca

b

(b) An NFA A over IM .

s,a

t,b

t,c s,b

s,c

t,a

1/1

1/1

1/1

1/1
1/1

1/1

0/0,1/1

0/1,1/1

(c) The product of M and A.

Fig. 3. Representation of the product of a Mealy machine and a context NFA.

Informally, the semantics of the product M × A equipped with ∆M×A are
those of a universally branching machine. Given an input word α, an execution
of this product consists on multiple parallel runs, each one being the product of
a single run of A on α with the deterministic run of M on this sequence. This
notion of product of a Mealy machine with an NFA is explored in greater detail
in [14].

In a state pair (s, a) ∈ SM × SA, the state s of M is responsible for the
input/output behaviour, while a represents the input sequences that are non-
blocking at this point. Two pairs (s, a), (t, b) ∈ SM ×SA are distinguishable or
incompatible, denoted (s, a) � (t, b) if λM (s, α) 6= λM (t, α) for some sequence
α available in both (s, a) and (t, b), i.e., α ∈ LA(a)∩LA(b). In this situation we
say that α witnesses (s, a) � (t, b), written α |= (s, a) � (t, b). Two pairs are
equivalent, denoted (s, a) ∼= (t, b), if, in addition to being compatible, it holds
a = b.
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In the following result, we bound the length of shortest distinguishing se-
quences for state-pairs in SM × SA (see Appendix A for the proof):

Theorem 1. Let M be a Mealy machine and let A be an NFA over IM . Let
s, t ∈ SM b, a ∈ SA. Suppose that (s, a) � (t, b) as well as a w b. Then there
exists some α ∈ LA(b) satisfying both α |= (s, a) � (t, b) and |α| ≤ |SM ||SA|.

4.2 Context Tree

During our discussions we need to consider the “unrolling” of the context au-
tomaton A on various words. We formalize this notion in the following definition.
The context tree is the set Γ ⊆ LA × SA consisting of the pairs a/α, where
a ∈ ∆A(α). The elements a/α of the testing tree are called nodes. A node a/α
is read as “a at α”, and represents a point during an execution of A. Given a
set of sequences D ⊆ LA, we put Γ (D) for the nodes a/α ∈ Γ with α ∈ D. We
say that a node b/β precedes another one a/α, written b/β � a/α, if α = βγ and
a ∈ ∆A(b, γ), for some γ.

Two tests α, β ∈ E are called E-separable, denoted α #E β, if there is a
suffix γ satisfying αγ, βγ ∈ E and λM (δM (α), γ) 6= λM (δM (β), γ). This notion
of separability has been used in classical conformance testing [20], and learning
(called “apartness”) [26]. The following result gives justification for it.

Lemma 1. Suppose that α #E β for two tests α, β ∈ E. Then δN (α) 6= δN (β)
for any N ∈ = satisfying M ∼E N .

Each node a/α ∈ Γ corresponds naturally to a location (δM (α), a) ∈ SM×A.
Given a set of nodes R ⊆ Γ (E), we say that E is incompatibility-preserving
with respect to (w.r.t.) R if for any a/α, b/β ∈ C with (δM (α), a) � (δM (β), b)
it holds α #E β.

4.3 Rankings and Basic Proof of Completeness

During this section we prove a weaker version of our main result where the
central arguments of the full proof are showcased. A node ranking is a sequence
(aj/αj)mj=1 ⊆ Γ of nodes where α1 < · · · < αm. We call a ranking flat if a1 =
· · · = am, and monotonous if a1 w · · · w am. We will be loose with the use of
notation and treat rankings as sets when convenient, instead of sequences. We
write R � a/α for a ranking R whenever b/β � a/α holds for all elements b/β ∈ R.

We say that a node a/α is k-saturated if there is a monotonous ranking
R ⊆ Γ (E) with |R| = k, where b/β � a/α for all b/β ∈ C, and E is incompatibility-
preserving w.r.t. R. If all the nodes a′/α with a′ ∈ ∆A(α) are k-saturated, then
we say that the sequence α is k-saturated itself.

Theorem 2. Suppose that all tests α ∈ LA \ E have a prefix β ∈ E which is
(k + 1)-saturated. Then E is k-complete.
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Proof. The proof follows an argument of infinite descent. The idea is that given
a test α ∈ LA\E which detects a fault not covered by E, another strictly shorter
sequence α′ with the same properties can be found. As decreasing sequences of
natural numbers are necessarily finite, this scenario is impossible and full fault
detection by E is guaranteed. The central part of the “shrinking” argument is
that whenever a sufficiently large ranking R can be found throughout a test α,
then this sequence necessarily follows a “lasso”-like path in the product M ×A
and some central portion of α can be removed.

We proceed by contradiction. Let N ∈ =k be a machine satisfying both
M ∼E N and M �LA

N . Let α ∈ LA \ E be a shortest test distinguishing
M and N . We show that it is possible to build an even shorter sequence α′

that also distinguishes M and N . Let β ∈ E be a (k + 1)-saturated prefix
of α, and let γ be the suffix satisfying βγ = α . As α ∈ LA, it must be that
γ ∈ LA(b) for some b ∈ ∆A(β). The node b/β is (k+1)-saturated, so there is some
monotonous ranking R ⊆ Γ (E) witnessing this property. Let R = (cj/ϕj)

k+1
j=1 . As

|SN | ≤ k, by the pigeonhole principle there must be two indices x < y for which
δN (ϕx) = δN (ϕy). Let ω be the suffix satisfying ϕyω = β, and ϕyωγ = α. Let
α′ := ϕxωγ The following statements hold true:

Claim (I). α′ ∈ LA.

First, note that ωγ ∈ LA(cy). Indeed, this follows from (ϕy, cy) � b/β together
with γ ∈ LA(b). As cx w cy, it also holds that ωγ ∈ LA(cx). This, in conjunction
with cx ∈ ∆A(ϕx), shows the claim.

Claim. λM (δM (ϕy), ωγ) 6= λN (δN (ϕy), ωγ).

The fact that M ∼E N and ϕy ∈ E, implies λM (ϕy) = λN (ϕy). However, we
know that λM (α) 6= λN (α), and α = ϕyωγ, so the claim follows.

Claim (III). λN (δN (ϕx), ωγ) = λN (δN (ϕy), ωγ).

This is straight-forward, as δN (ϕx) = δN (ϕy).

Claim (IV). λM (δM (ϕx), ωγ) = λM (δM (ϕy), ωγ).

Suppose that (δM (ϕx), cx) � (δM (ϕy), cy). As R is a ranking witnessing that b/β
is (k + 1)-saturated, E is incompatibility-preserving w.r.t. R. Thus, ϕx #E ϕy
follows. However, by Lemma 1 this contradicts the fact that δN (ϕx) = δN (ϕy)
while at the same time M ∼E N . Hence, (δM (ϕx), cx) ∼ (δM (ϕy), cy) must hold.
This implies the statement, because ωγ ∈ LA(cx)∩LA(cy), as evidenced during
the first claim.

These four claims put together show that α′ belongs to LA, while also dis-
tinguishing M and N . However |α′| < |α|, contradicting our initial choice of α.
Thus, no machine N ∈ =k can satisfy M ∼E N and M �LA

N at the same
time. This completes the proof of our theorem. ut
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4.4 Cores and Covers

Analogously to classical conformance testing algorithms, our proposed methods
rely on the initial construction of “cover” of relevant locations. For this we use
a notion of core equivalent to the one appearing in [17].

We say that a set V ⊆ LA is well-founded if ε ∈ V . Let V be a well-
founded set. For a word α ∈ LA, we define |α|V as the length of the shortest
suffix γ satisfying βγ = α, for some β ∈ V . Given words α, β, we write β ≤V α if
β ≤ α and additionally β < γ < α holds for no sequence γ ∈ V . Intuitively, this
means that β lies along the shortest path from V to α. It is straightforward to
see that ≤V constitutes a partial order over LA. Finally, we put b/β �V

a/α for a
pair of nodes if β ≤V α, in addition to b/β � a/α. Given a ranking R, we define
R �V

a/α analogously as before.
We call a set of locations Q ⊆ SM×A a core, if for all (s, a) ∈ SM×A there

is some (t, b) ∈ Q with (s, a) ∼ (t, b) and b w a. A core cover is a well-founded
set V ⊆ LA for which the set { (s, a) | ∃α ∈ V, (s, a) ∈ ∆S×A(α) } is a core.

4.5 Certificates and Main Condition for Completeness

Here we give our main sufficient condition for suite completeness. This condition
is enforced constructively by our proposed algorithms (Section 5), ensuring that
they produce k-complete suites, as required. For the remainder of the section,
we fix a core Q ⊆ SM×A and a corresponding cover V ⊆ E, in addition to
M,A,E,v, which were set beforehand.

Given a node ranking R ⊆ Γ , a basis for R is another set of nodes B ⊆ Γ (V )
satisfying the following two properties: (1) Nodes in B correspond to pair-wise
incompatible locations. That is, (δM (α), a) � (δM (β), b) for all nodes a/α, b/β ∈
B. (2) Whenever (δM (α), a) ∼ (δM (β), b) holds for some a/α ∈ B, β/b ∈ C, it
follows that a w b. Intuitively, this means that B represents more “testable”
locations than R.

A redundancy certificate for a node a/α is a pair (R,B) where R ⊆ Γ (E \
V ) is a monotonous ranking satisfying R �V

a/α, and B ⊆ Γ (V ) is a basis for
R. Note that according to this definition R and B are disjoint. Analogously
to rankings, certificate is flat if all nodes in R ∪ B correspond to the same
state a ∈ SA. We say that a node a/α ∈ Γ is k-redundant if there is some
redundancy certificate (R,B) for the node a/α which satisfies |R|+ |B| = k and
E is incompatibility preserving w.r.t. R ∪ B. Analogously as with k-saturated
sequences, we say that a test α ∈ LA is k-redundant if all the nodes a/α, where
a ∈ ∆A(α), are k-redundant themselves.

Theorem 3. Suppose that all tests α ∈ LA \E have a (k + 1)-redundant prefix
β ∈ E, satisfying β ≤V α. Then E is k-complete.

The proof is similar to the one of Theorem 2. The main argument relies
on showing that distinguishing sequences α outside of E can be “shrunk” as
well. The two main differences are that now the relevant measure of size is |α|V
rather than |α|, and that in the combinatorial arguments we exploit the sizes of
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certificates (R,B), rather than those of rankings R, as before. The full proof can
be found at Appendix B.

5 Proposed Algorithms

In this section we give high-level descriptions of two algorithms for the restricted
conformance problem. Let M be an specification machine and A a context au-
tomaton, as before. We present two algorithms for the restricted conformance
testing problem, dubbed Simple and Complex, which use the theory devel-
oped so far. Both procedures mainly differ in whether they attempt to exploit
the language inclusion relation over SA.

5.1 Simple Variant

Our procedure Simple uses a generalization of the concept of harmonized identi-
fiers adapted to our context. A family of harmonized identifiers is given by a
set of words W(s,a) for each location (s, a) ∈ SM×A satisfying (1) W(s,a) ⊆ LA(a),
(2) whenever (s, a) � (t, a) for some (s, a), (t, a) ∈ SM×A, some α ∈ W(s,a) ∩
W(t,a) witnesses (s, a) � (t, a). Note that the sets W(s,a) only need to distinguish
(s, a) from other locations corresponding to the same context state a.

Algorithm 1 shows the basic structure of Simple. The algorithm constructs
a k-complete suite E by successively adding various sequences to it. We assume
E to be prefix-closed throughout the exposition. Hence, whenever we include
a test α in E, all its prefixes are implicitly added as well. We initialize the
suite E to a cover V of some core Q (line 3). The routine WeakCore() simply
selects one location (s, a) from each equivalence class SM×A/ ∼=, and Cover(Q)
explores LA in a breath-first fashion until all locations in Q have been visited.
Afterwards, we compute a family of harmonized identifiers W(s,a), and enlarge
E by appending them to suitable sequences α ∈ V (line 5). Finally we expand
E in a depth-first way starting from each word αV ∈ V (line 6).

Algorithm 1 Simple(M,A, k)

Input A specification machine M , context automaton A, and a bound k.
Output A k-complete suite E for M in the context of A.

1: Q←WeakCore()
2: V, toCvr ← Cover(Q) . toCvr is a map Q → V where

(s, a) ∈ ∆M×A(toCvr(s, a))
3: E ← V
4: {W(s,a)}(s,a) ← family of harmonized identifiers
5: for all (s, a) ∈ Q do E ← E ∪ αW(s,a), where α := toCvr(s, a)
6: for all α ∈ V do αV ← α, and Explore(ε)
7: return E

The final depth-first exploration carried out in the routine Explore(β),
shown in Algorithm 2. The search conducted in a recursive manner starting
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from αV . This is done by expanding a candidate suffix β successively. For this
purpose, we examine each possible continuation αVβi and determine whether the
search space can be pruned at that point. We decide to stop exploring from αVβi
if the sequence can be made (k+1)-redundant by adding suitable distinguishing
sequences. This is done a big enough redundancy certificate for each node a/αV β ∈
Γ via SearcCerts(β), and making E incompatibility preserving w.r.t. these
certificates in ExploitCert(R,B). We give a more detailed view of those steps.

Algorithm 2 Explore(β)

Input a suffix β with αVβ ∈ LA.

1: for all inputs i ∈ IM with αVβi ∈ LA \ V do
2: Certs← SearcCerts(βi).
3: if Certs 6= false then
4: add αVβi to E
5: for all (R,B) ∈ Certs do ExploitCert(R,B)
6: else Explore(βi)
7: end if
8: end for
9: return

The function SearcCerts(β), shown in Algorithm 3, attempts to find a
redundancy certificate (Ra, Ba) satisfying |Ra| + |Ba| = k + 1 for each node
a/αV β ∈ Γ . If it succeeds, the family of certificates (Ra, Ba) is returned. Other-
wise, it just returns false. The search of a certificate (Ra, Ba) for a node a/αV β

is divided in two stages. First, a set Rankings of candidate rankings satisfying
R �V

a/αV β is constructed via BuildRankings(β, a). Afterwards, for each rank-
ing R ∈ Rankings we find a suitable basis using the routine Basis(R), and we
check whether |R|+ |Basis(R)| ≥ k + 1.

Algorithm 3 SearchCerts(β)

Input a suffix β with αVβ ∈ LA.
Output a set Certs of redundancy certificates for αVβ, or false

1: Certs← {}
2: for all a ∈ ∆A(αVβ) do
3: Rankings← BuildRankings(β, a)
4: if there for some R ∈ Rankings with |R|+ |Basis(R)| ≥ k + 1 then
5: add (R,Basis(R)) to Certs
6: else return false
7: end if
8: end for
9: return Certs.
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In this variant, BuildRankings(β, a) builds a family of flat rankings through
a linear scanning of the nodes c/ϕ �V

a/αV β. Given a flat ranking R := (c/ϕi)`i=1,
for a fixed c ∈ SA, the method Basis(R) constructs a basis for R simply
by finding all locations of the form (s, c) in the core Q. Finally, the function
ExploitCert(R,B) is tasked with making E incompatibility preserving w.r.t.
a given flat certificate (R,B) by adding several distinguishing sequences to E.

Algorithm 4 BuildRankings, Basis, ExploitCert (Simple’s version)

1: procedure BuildRankings(β, a)
Input a suffix β with αVβ ∈ LA, and a state a ∈ ∆A(αVβ)
Output A set Rankings of constant rankings R �V

a
αV β

.
2: Rankings← {}
3: initialize empty rankings Rb1 , Rb2 , . . . for all bi ∈ SA.
4: Ω ← set of nodes c/ϕ �V

a/αV β.
5: for all j = 1, 2, . . . , |β|, and all (αV · β≤j , b) ∈ Ω do
6: append b/αV · β≤j , to Rb.
7: end for
8: Rankings← {Rb}b∈SA

9: end procedure

10: procedure Basis(R)
Input A flat ranking R = (c/ϕj)

`
j=1 ⊆ Γ , for some c ∈ SA.

Output A basis B for R.
11: B ← {}
12: for all (s, c) ∈ Q, add (toCvr(s, c), c) to B
13: return B
14: end procedure

15: procedure ExploitCert(R,B)
A flat redundancy certificate (R,B).

16: for all c/ϕ ∈ C do
17: s← δM (ϕ)
18: add ϕW (s, c) to E.
19: end for
20: end procedure

5.2 Complex Variant

The basic structure of the method Complex is is largely similar that of Simple.
The main difference is that Complex takes an additional parameter v, which
is an under under-approximation of language inclusion over SA. The goal of
Complex is to exploit v to obtain a possibly more reduced suite than Simple.
The detailed description of the algorithm is mostly technical in nature an can be
found in Appendix C. Advanced uses v two main different ways: (1) It uses v
for computing the core Q, yielding a possibly smaller initial cover than Simple.
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(2) It uses v to search for non-flat chains and certificates. This potentially allows
Advanced to prune the exploration process space earlier than Simple.

The procedure however, shows two main disadvantages with respect to the
simpler variant. The first is that searching for general certificates costs more time
than searching just for flat ones, as Simple does. The second is that making a
suite incompatibility-preserving w.r.t. general certificates requires more involved
strategies for adding distinguishing suffixes. Here the idea of using harmonized
identifiers does not work, as one needs to distinguish locations (s, a), (t, b) for
a 6= b, and Complex potentially adds more distinguishing sequences, or longer
ones.

5.3 Complexity Bounds

In this section we study the complexity of our procedure Simple both in terms
of time and sizes of the output suites. We also give the related expressions for
Complex. Two notable aspects come out from of this analysis. One is that our
methods avoid the addition of exponential-length tests, issue which the State-
Counting approach [17] suffered from. The second is that our proposed tech-
niques spend polynomial time in the generation of each test sequence, unlike the
SAT-based approach from [19].

Fix M,A, k, with k ≥ |SM |. First we sketch a bound for the total number of
tests in the suite Simple(M,A, k). Let n(M×A) := |SM×A/∼=|. The coreQ contains
a location (s, a) for each class in SM×A/∼=. Thus, |Q| ≤ nM×A ≤ |SM ||SA|, and a
cover V for Q contains at most |SM ||SA| words. Now we give a bound the depth
of the exploration process carried out in Explore. The following result refers
to the scope of Simple. Its proof can be found at Appendix D

Theorem 4. Fix αV ∈ V . Let β be a suffix with αV β ∈ LA and |β| = k|SA| −
nM×A + 1 Then the method SearchCerts(β) does not return false.

Let e := k|SA| −nM×A. The parameter e plays a similar role in this analysis
to the number of extra states in traditional conformance testing. Last result
shows that the Explore in the worst case may add possible suffixes β of size
e + 1 to each word αV ∈ V . This yields potentially |SM ||SA||IM |e+1 sequences
of the form αVβ. For each of these, Simple appends appends potentially |SA|
identifiers W(s,a), either during its initial phase or during ExploitCerts. This
yields an upper bound of |SA|2|SM |2|SM ||IM |e+1| tests in the suite returned by
Simple.

To obtain the total number of symbols produced by Simple we multiply last
bound by the maximum size of a test in the suite. Without loss of generality,
tests generated in Simple are of the form αVβγ, where αV belongs to the cover
V , β is an arbitrary suffix with |β| ≤ e + 1, and γ is a distinguishing sequence
belonging to some haromonized identifier W(s,a). Clearly, |αV | ≤ |SA||SM |, and
using Theorem 1 yields γ ≤ |SA||SM | as well. Putting everything together we
get |αVβγ| ≤ 3|SA|k. This gives us a bound expression of O(k|SA|3|SM |2|IM |e+1|
symbols generated in Simple.
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We note that the bounds obtained for Simple are optimal, in the sense that
whenever A is the universal NFA with one state, we recover the bounds for
the W-method, discussed in Section 2.1. The time cost of analysis of Simple
can be gotten from examining the routines SearchCerts and ExploitCert.
This can be seen in more detail in Appendix E. The resulting time cost is
O((k|SA|3|SM |3 + |SA|4|SM |)e|IM |e+1).

For completeness sake we briefly discuss the complexity analysis of Com-
plex. The bounds for number of tests and symbols obtained for Simple also
apply for this second variant following similar arguments. The time-cost of
the procedure is covered in Appendix E, and is given by O((k|SA|3|SM |3 +
|SA|5|SM |)e|IM |e+1).

6 Experimental Results

Our proposed methods were motivated by the task of testing a component with
observable interfaces and non-controllable inputs. During our experiments, we
evaluated our techniques on the problem of testing the tail T of a cascade com-
position T ◦ H (Problem 3). For this, we use the reduction described in Sec-
tion 3.1, which transforms the head H into a suitable NFA A. We aim to answer
the following questions: (1) How do our techniques compare against the base-
line method presented in Section 3.1? (2) How do the sizes of the component
machines and the number of extra states influence our methods? Finally, the
theory developed in Section 4 allows for a natural application of approximate
techniques for NFA reduction and language-inclusion. Hence, our last question
is: (3) what kind of impact do those strategies have? We describe now our ex-
perimental setup. Our benchmarks consist of randomly constructed cascades of
Mealy machines, formed by a head H, and a tail T , where OH = IT . We say
a cascade is of size n ×m if |SH | = n and |ST | = m. To construct the random
benchmarks, we utilized the generator in FSMLib [21], which produces reduced
connected Mealy machines with given alphabet sizes and number of states. All
experiments were run on an Intel Core i5-6200U (2.30GHz) machine with a limit
of 4GB RAM memory, and a time limit of 3 minutes

In order to answer the first question, we implemented Simple (Section 5.1)
and compared it against the testing of the composite machine described in Sec-
tion 3.1. To represent this baseline, we applied the H-method [7] on the composite
machine P , using the implementation provided by FSMLib.

In Figure 4, we compare total numbers of symbols and execution times for
Simple and the baseline method. For each tail size |ST | = 2, 4, 6, 8, 10, 12, we
generated one hundred cascades where |SH | = 5 and all alphabets were of size
4. We considered no extra states in these experiments. That is, we aimed for
k-complete suites for T , where k = |ST |. Solid lines in our graphs represent
median quantities, and areas around those lines are enclosed by the 25-th and
75-th percentiles of their respective metrics. We conclude that our proposed
method, Simple, greatly outperforms the testing of the composite machine in
both selected criteria. The main problem the baseline method encountered was
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Fig. 4. Comparison between Simple and the testing of the composite machine.

the space limitation. Already with cascades of size 5×10, 31% of the experiments
ran out of memory. The root cause of this was the blow-up of extra states,
discussed in Section 3.1. Among the 5 × 12 benchmarks, the amount of extra
states considered by the baseline was bigger than 9 a 27% of the times.

In order to study the potential benefits of NFA reduction and language-
inclusion techniques, we implemented an additional algorithm representing our
best attempt at the gray-box testing problem. Here, first we optimize A’s with
the approximate method implemented in the tool Reduce [4]. Afterwards, we
compute the so-called “look-ahead forward direct simulation relation”, intro-
duced in [4], which gives us an under-approximation v of language inclusion
over SA. If this results in a trivial relation, we fall back to Simple. Otherwise,
we try to exploit v by calling Complex (Section 5.2). We dub this whole pro-
cedure Advanced. The amount of look-ahead used in both the tool Reduce and
the computation of v was set to 16.

To address the rest of our questions, we generated two additional batches of
500 cascade compositions each. In the first, we fixed |SH | = 20, and generated
100 benchmarks for each value |ST | = 10, 20, 30, 40, 50. In the second followed
the same process with the roles of |SH | and |ST | reversed. In order to obtain
automata A where minimization and language-inclusion techniques show inter-
esting behaviour, we fixed |IH | = 6, and |IT | = |OT | = 3. Experimentally, for
values |IH |/|IT | smaller than two, we found those techniques to have no effect
on A in the majority of times, while for larger values A is easily found to be
universal. This is consistent with the results in [4].

Figure 5 displays the experimental data of Simple and Advanced on this
second set of benchmarks, with zero additional states under consideration. We do
not include the baseline here, as it yielded out of memory errors already in 80% of
20×10 and 10×20 compositions. The general trend is that Advanced produces
much smaller suites than Simple at the cost of a greater execution time. Both
aspects of this comparison are more pronounced when H grows than when T
does so. We attribute these differences largely to the automata reduction step
in Advanced. In 90% of the experiments, the minimization call was responsible
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Fig. 5. Performance of our proposed algorithms with respect to the size of the head
(upper row) and the tail (lower row).

73.4% of Advanced’s execution time, while on half the experiments this number
ascends to 95.5%. It is worth pointing out that despite producing larger suites,
Simple was able to complete the vast majority of the experiments (927/1000)
in under a second.

For Figure 6 we ran again a subset of the previous experiments, but consid-
ering one addditional extra state. Out of the original 1000, we picked the 600
cascades where head and tail had at most 30 states. Here Advanced outper-
forms Simple in both time and number of symbols. Moreover, minimization time
still accounted for a 67% of Advanced’s execution time in half of the occasions.
In this case, the initial automata minimization step seems clearly beneficial.
The observed effect of the additional state is drastic both with respect to execu-
tion times and suite sizes. Nevertheless, this impact is much smaller than what
our worst-case analyses predict (Section 5.3). According to those, an additional
state could worsen the metrics of both procedures by a factor of |IT ||SH |. This
ascends to around 35 · 108 for |IT | = 3 and |SH | = 20. We note that this blowup
is unavoidable for black-box testing techniques. However, the relative increase
between Figure 5 and Figure 6 is not nearly as large.

Lastly, to evaluate the effect of the language inclusion relation on our algo-
rithms, we implemented an additional procedure Simple+Reduce, which just
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Fig. 6. Performance of our algorithms in the presence of extra states.

calls Simple after the initial NFA reduction. We ran the experiments of Figure 5
and Figure 6 on this method, and compared it against Advanced. We note that
in about 60% of the experiments both methods performed the same operations,
as the relation v obtained from A was trivial. For the remaining 40% of the
cases, we computed the ratio of symbols produced by Advanced to symbols
produced by Simple+Reduce. This information is summarized in Table 1. We
observe that in 75% of the times exploiting v by means of Advanced was ei-
ther noticeably beneficial or had almost no effects. However, in about 10% of
the cases the impact was clearly negative.

Advanced / Simple + Reduce

Extra States 1% 10% 25% 50% 75% 90% 99% 100%

k = |SM | 0.047 0.377 0.761 1.0 1.045 1.301 1.971 2.973

k = |SM |+ 1 0.006 0.249 0.515 1.0 1.009 1.360 1.926 ∞

Table 1. Symbols produced by Advanced over symbols produced by Sim-
ple+Reduce
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A Proof of Theorem 1

It is clearly enough to show the result for a = b, α |= (s, a) � (t, b) is equivalent
to α |= (s, b) � (t, b) whenever LA(a) ⊇ LA(b).

For any s, t ∈ SM and a ∈ SA, we write s �a t as a shorthand for (s, a) �
(t, a). Additionally, we say that s �ja t when α |= s �a t for some α with
|α| ≤ j. We adopt the convention that s ∼0

a t for all s, t, a. Let m = |SM ||SA|.
We show that ∼ma is the same relation as ∼a for all a ∈ SA. Note that this
proves our statement. We proceed by showing various claims. The first ones are
straight-forward.

Claim 1. The relation ∼j+1
a refines ∼ja, written ∼ja⊇∼j+1

a . This means that
s ∼j+1

a t implies s ∼j+1
a t for all s, t, a, j.

Claim 2. The relations ∼ja, ∼a are equivalence relations, and ∼a= ∩∞j=1 ∼ja.

Claim 3. Suppose that for some j ∈ N it holds that ∼ja=∼j+1
a for all a ∈ SA.

Then ∼ja=∼ka for all k ≥ j and all a ∈ SA. To show this claim, suppose that
s ∼ja t but s �j+1

a t, for some j > 0. Let i1i2 . . . ij+1 ∈ L(a) be a sequence
distinguishing s and t. Let s′ := δM (s, i1), t′ := δN (t, i1), and let b ∈ ∆A(a, i1)
be such that i2 . . . ij+1 belongs to L(b). Then s′ �jb t′. Furthermore, it cannot

be that s′ �j−1b t′ as well. Otherwise s �ja t would follow, contradicting our
initial assumption. Hence we have shown that if for some a ∈ SA, j > 0 it holds
∼ja 6=∼j+1

a then ∼j−1b 6=∼jb for some b ∈ SB . This is equivalent to the claim.
Now we can complete the proof of our theorem. For each j ∈ N consider

the set of equivalence relations {∼ja}a∈SA
. Because of Claim 3, we know that at

each successive step j = 1, 2, . . . at least one relation is refined ∼ja)∼j+1
a , until

∼ja=∼a for all a ∈ SA. If ∼ja)∼j+1
a , then ∼j+1

a yields strictly more equivalence
classes than ∼ja. For each a, the relation ∼ja can have at most |SM | equivalence
classes. Thus, the relations {∼ja}a∈SA

can be refined at most m = |SM ||SA| times
in total. This implies ∼ma =∼a for all a, as we wanted to show. ut

B Proof of Theorem 3

We proceed by contradiction as in Theorem 2. We take N ∈ =k satisfying
M ∼E N and M �LA

N , and α ∈ LA \ E a sequence distinguishing M and N
which minimizes |α|V . This time we show that another sequence α′ separating M
and N as well, with |α′|V < |α|V can be found. Let β ∈ E be a (k+ 1)-redundant
prefix of α, with β ≤V α, and let γ be the prefix for which α = βγ. Let b ∈ ∆A(β)
be a state satisfying γ ∈ LA(b). The node b/β is (k + 1)-redundant, so there is
a redundancy certificate (R,B) witnessing this property. Let R = (dj/ζj)`j=1. As
|R∪B| = k+1, by the pigeonhole principle there are c/ϕ1, ϕ2/c2 ∈ C∪B satisfying
δN (ϕ1) = δN (ϕ2). Without loss of generality we can assume that |ϕ1|V ≤ |ϕ2|V .
As before, we proceed by giving various claims.

Claim (I). (δM (ϕ1), c1) ∼ (δM (ϕ2), c2).

Otherwise we would have ϕ1 #E ϕ2, as E is incompatibility preserving w.r.t.
R ∪B. But this contradicts M ∼E N , proving the claim.
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Claim (II). Either one of the following holds. Case 1: c1/ϕ1 = dx/ζx, c2/ϕ2 = dy/ζy,
for some indices x < y. Case 2: (ϕ1, c1) ∈ B, (ϕ2, c2) ∈ C

Last claim shows that both c1/ϕ1, c2/ϕ2 cannot belong to B at the same time, as
it would yield a conflict with the definition of basis. Thus there are two possible
scenarios: either (i) both nodes belong to R, or (ii) exactly one of them lies in B.
We show that these correspond to Case 1 and Case 2 in the statement, respec-
tively. We begin by assuming (i). In this situation, we know that c1/ϕ1 = dx/ζx,
c2/ϕ2 = dy/ζy, for some x, y, and we have to prove x < y. As R �V

b/β, it holds
that ζ1 ≤V β, so there is no ξ ∈ V with ζ1 < ξ < β. This implies ζ1 <V · · · <V ζ`,
and as a consequence |ζ1|V < · · · < |ζ`|V . By assumption |ϕ1|V ≤ |ϕ2|V , so x < y
follows. Hence, Case 1 holds. Now we assume (ii) instead. Note that for all
(ζ, d) ∈ B it holds ζ ∈ V , so |ζ|V = 0. Conversely, for all (ζ, d) ∈ C, ζ /∈ V , and
|ζ|V > 0. Again, by assumption |ϕ1|V ≤ |ϕ2|V , implying c1/ϕ1 ∈ B and c2/ϕ2 ∈ C,
as in Case 2.

For the remainder of the proof we will refer to the cases Case 1 and Case
2 in last claim.

Claim (III). The inequality |ϕ1|V ≤ |ϕ2|V is strict.

Case 1: In the proof of Claim (II) we showed |ζ1|V < · · · < |ζ`|V . Hence the
statement follows. In this situation ϕ1, ϕ2 lie among the ζj ’s, so the ranking of
inequalities implies our claim. Case 2: Note that for all (ζ, d) ∈ B it holds
ζ ∈ V , so |ζ|V = 0. Conversely, for all (ζ, d) ∈ C, ζ /∈ V , and |ζ|V > 0. This shows
the claim.

Claim (IV). c1 w c2.

Case 1: The statement follows from the definition of monotonous ranking.
Case 2: By Claim (III), it holds (ϕ1, c1) ∈ B, (ϕ2, c2) ∈ C. Using the defi-
nition of basis and Claim (I), we obtain c1 w c2 in this case as well.

Now we are in conditions to build the second distinguishing sequence α′. By
Claim (II) c2/ϕ2 ∈ C, so ϕ2 ≤ β. Let ω be the suffix satisfying β = ϕ2ω.
Then α = ϕ2ωγ. We define α′ as the word ϕ1ωγ. They following claims can
all be shown exactly as in Theorem 2’s proof: Claim (V). α′ ∈ LA. Claim
(VI). λM (δM (ϕ2), ωγ) 6= λN (δN (ϕ2), ωγ). Claim (VII). λN (δN (ϕ1), ωγ) =
λN (δN (ϕ1), ωγ). Claim (VIII). λM (δM (ϕ1), ωγ) = λM (δM (ϕ2), ωγ).

Claims (V)-(VII) show that α′ belongs to LA and distinguishes M from N .
All that is left is to prove |α′|V < |α|V . Using |α|V = ϕ1 and α′ = ϕ2ωγ we
obtain (1) |α′|V ≤ |ϕ2|V + |ωγ|. Now we show a similar expression for |α|V . As
(ϕ2, c2) �V

b/β it holds ϕ2 ≤V β. Also, by hypothesis, β ≤V α. Putting the in-
equalities together we get ϕ2 ≤V α. This yields |α|V = |ϕ2|V + |ωγ|. Additionally
|α′|V ≤ |ϕ1|V + |ωγ|. Comparing the expression for α and α′ and utilizing Claim
(III) gets us |α′|V < |α|V . This contradicts our initial choice of α and completes
the proof of the theorem. ut
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C Detailed Description of Complex

Algorithm 5 shows the main structure of Complex. The routine Core() first
obtains a core Q from WeakCore and afterwards removes each location (s, a) ∈
Q if there is another one (t, b) ∈ Q where (s, a) ∼ (t, b) and b w a. The second
difference is that Complex does not make use of harmonized quasi-identifiers,
unlike Simple, but instead relies on a map of distinguishing sequences DistSeqs.
This map stores a shortest separating sequence α |= s �a t for each triple
s, t ∈ SM , a ∈ SA, if it exists, or the empty sequence otherwise. Finally, the last
difference is that in Complex no distinguishing sequences are added to the cover
V initially. Instead we add these sequences dynamically during the exploration
process.

Algorithm 5 Complex(M,A,v, k)

Input A specification machine M , context automaton A, an under-approximation
v of language containment over SA × SA, and a bound k.

Output A k-complete suite E for M in the context of A.

1: Q← Core()
2: V, toCvr ← Cover(Q) . toCvr is a map Q → V where

(s, a) ∈ ∆M×A(toCvr(s, a))
3: E ← V
4: DistSeqs← map SM ×SM ×A→ I∗M assigning a shortest distinguishing sequence
α |= s �a t for each s, t ∈ SM , a ∈ SA.

5: for all α ∈ V do αV ← α, and Explore(ε)
6: return E

In its final step, Complex performs a depth-first search from each word
αV ∈ V , enlarging E along the way. For this, the algorithm relies on the same
routines Explore and SearchCerts utilized by Simple. We modify, however
the functions BuildRankings, Basis, and ExploitCert. Now we can use w
to produce general monotonous rankings, instead of only flat ones as before. This
allows Complex to potentially prune the search space earlier, as it can force
shorter sequences to become (k + 1)-redundant.

Similarly as with Simple, the method BuildRankings(β, a) builds a family
Rankings of monotonous rankings R �V (αVβ, a). It does so by building for each
b ∈ SA a maximum-length ranking (cj/ϕj)`j=1 where cj = b. This can be done
incrementally by scanning the nodes c/αV β

′ �V
a/αV β for each prefix β′ ≤ β.

Finding a greatest basis B ⊆ Γ (V ) for a monotonous ranking is, in principle,
computationally hard, given that this task can be reduced to a maximal inde-
pendent set problem. However, if we do not aim for a biggest basis, the task can
be carried out with relative efficiency. We propose a greedy approach in Basis
for this purpose.

Finally, ExploitCert(R,B) is tasked with making E incompatibility pre-
serving w.r.t. the certificate (R,B) by adding various distinguishing sequences,
as before. Following a naive approach involves adding a distinguishing sequence
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for each pair (ω1, b1), (ω2, b2) ∈ C ∪ B where (δM (ω1), b1) � (δM (ω2), b2). This
adds up to potentially (|C|+ |B|)2 = (k+1)2 sequences. However, if one chooses
the sequences carefully, it is only needed to distinguish the nodes in R with those
in B, and the nodes in B among themselves. As |B| ≤ |SM |, this brings down
the number of separating sequences to at most (k + 1)|SM |. We implement this
technique in ExploitCert.

D Proof of Theorem 4

We show that in the body of the main loop SearchCerts (Algorithm 3) is able
to find a big enough redundancy certificate for all nodes a/αV β. For each a ∈ SA
let ma be the number of different classes in SM×A/∼= corresponding to locations
of the form (s, a). Then |β| = (k|SA| −

∑
a∈SA

ma) + 1. Let a ∈ ∆A(αV β).
Then there is at least one sequence of nodes (αV β≤1, b1) � (αV β≤2, b2) � · · · �
(αV β, a). This sequence has length |B|, so by the pigeonhole principle at one
state b ∈ SA occurs at least k −mb + 1 times throughout the succession. Thus,
this quantity is a lower bound for the size of the flat ranking Rb, corresponding
to b, built in the procedure BuildRankings(β, a). Now, note that Basis(Rb)
returns a basis of size exactly nb. Hence, |Rb| + |Basis(Rb)| ≥ k + 1, and the
conditional in Algorithm 3, line 4 is true. Our initial choice of a ∈ ∆A(αV β) was
arbitrary, so this proves that SearchCerts(β) does not return false. ut

E Time-Cost Analysis for Simple and Complex

For the complexity analysis of Simple, we only need to consider the time spent
in the routine Explore. Potentially, this function is called once for each word
αVβ, where αV ∈ V , and |β| ≤ |SA|k − nM×A + 1. During these calls, Explore
invokes the SearchCerts once, on β, and the method ExploitCert at most
|SA| times: one for each certificate returned by SearchCerts. We analyze both
functions separately.

Inside SearchCerts(β) most of the time is spent calling BuildRank-
ings(β, a). In this second function the bulk of the time is invested in building the
set Ω of nodes c/ϕ �V (αV β, a). This can be done by back-propagating the node
(αV β, a) throughout all words αV β

′ with β′ ≤ β. If one stores A reverse tran-
sitions, this takes at most O(|SA|2|β|) time. BuildRankings is called at most
|SA| times in the a single call of SearchCerts. Hence, SearchCerts(β) takes
O(|SA|3|β|) = O(|SA|3(e)) time. The method is called once for each word αV β,
so the total amount of time it uses during Simple is O(|SA|4|SM |(e)|IM |e+1)
time.

The workload inside ExploitCert(R,B) is mainly the result of adding dis-
tinguishing suffixes. This method adds at most |R||SM | of those to E, and each
one of these sequences has length bounded by |SM ||SA|. If E is stored in a
tree structure, this can be done in O(|C||SA||SM |2) = O(k|SA||SM |2) time. The
method is called at most |SA| times for each word αV β. Hence, Simple spends
at most O(k|SA|3|SM |3(e)|IM |e+1) time in ExploitCert. Putting the bounds
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for SearchCerts and ExploitCert together gives us that the total time cost
of Simple(M,A, k) is O((k|SA|3|SM |3 + |SA|4|SM |)e|IM |e+1). Analogous argu-
ments can be used to obtain the complexity of Complex. The only relevant
change here is that there is an additional inner loop in the routine BuildRank-
ings, increasing its cost by a factor of |SA|. This yields a total complexity of
O((k|SA|3|SM |3 + |SA|5|SM |)e|IM |e+1) for Complex(M,A,w, k).
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Algorithm 6 BuildRankings, Basis, ExploitCert (Complex version)

1: procedure BuildRankings(β, a)
Input a suffix β with αVβ ∈ LA, and a state a ∈ ∆A(αVβ)
Output A set Rankings of monotonous rankings R �V

a
αV β

.
2: Rankings← {}
3: initialize empty rankings R0

b1
, R0

b2
, . . . for all bi ∈ SA.

4: Ω ← set of nodes c/ϕ �V
a/αV β.

5: for all j = 1, 2, . . . , |β|, and all b ∈ SA do
6: if b/αV · β≤j ∈ Ω then
7: Let c ∈ SA be the state c w b maximizing |Rj−1

c |.
8: Rjb = Rj−1

c ∪ b
αV ·β≤i

9: else Rjb = Rj−1
b .

10: end if
11: end for
12: Rankings← {R|β|b }b∈SA

13: end procedure

14: procedure Basis(R)
Input A monotonous ranking R = (cj/ϕj)

`
j=1 ⊆ Γ .

Output A basis B for R.
15: B ← {}
16: Q′ ← {}
17: for all j = 1, 2, . . . , ` and s ∈ SM do
18: if Q′ does not contain any (t, b) with (t, b) w (s, cj) then
19: Find (t, b) ∈ Q with (t, b) w (s, cj), and add it to Q′.
20: end if
21: end for
22: for all (s, c) ∈ Q′, add (toCvr(s, c), c) to B
23: return B
24: end procedure

25: procedure ExploitCert(R,B)
A redundancy certificate (R,B), where R = (cj/ϕj)

`
j=1.

26: for all j = 1, . . . , ` and all (ω, b) ∈ B do
27: s← δM (ϕj), t← δM (ω)
28: x← maximum index j ≤ x ≤ ` satisfying s �cx t.
29: Add ϕjγ to E, where γ = DistSeqs(s, t, cx)
30: end for
31: for all pairs (ω1, b1), (ω2, b2) ∈ B do
32: s1 ← δM (ω1), s2 ← δM (ω2)
33: x← maximum index 1 ≤ x ≤ ` satisfying s1 �cx s2.
34: Add ω1γ, ω2γ to E, where γ = DistSeqs(s1, s2, cx)
35: end for
36: end procedure
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